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Abstract

The Very Large Hadron Collider (VLHC) design is converging on a program where a
233 km circumference tunnel would first be occupied by a low field dipole system producing
40 TeV in the center of mass, followed by a higher field magnet system producing nearly
200 TeV in the center of mass. We consider the possibility of first using the tunnel for a
large e+e− collider. We assume that the total radiated synchrotron power will be limited to
100 MW. We describe the design strategy, the luminosity and energy reach, the factors that
limit the machine performance, the scaling laws that apply to its design, and the technology
that would be required for its implementation.
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1 Introduction

Plans for the future very large hadron collider (VLHC) now envisage a staging scenario [1]
where a low field collider would be built first followed by a high field collider in the same
tunnel several years later. There is also interest in an electron-positron collider in the same
tunnel which could study physics that would complement the studies with the hadron col-
lider. This machine could be used to, 1) examine the W and Zo with high precision, to
improve measurements of electroweak parameters by an order of magnitude, 2) study con-
tinuum fermion pair production, 3) produce clean Higgs mesons at an energy of perhaps
115 GeV, 4) measure the W mass from W pair production thresholds, and 5) look at the tt
thresholds with very good energy resolution [2]. The very large circumference of the tun-
nel makes it possible to think of an e+ − e− ring which could reach an energy about twice
that of LEP if we limit the synchrotron radiation power to 100 MW. Compared to the NLC,
the energy and possibly the luminosity reach of such a machine is lower. However the en-
ergy resolution is better than that of the linear collider. The technology required is proven
and available today. In this paper we outline the design of this very large lepton collider
(VLLC) and consider some of the accelerator physics issues. We compare and contrast the
parameters of this machine with LEP. Much of the material on LEP is obtained from a re-
cent workshop on the subject of “e+e− in the VLHC” [3], and a recent paper by Brandt et
al. [4]. We attempt to identify the mechanisms that will limit the performance of the collider
and look at scaling laws for for the operation of such a machine at high energies. We also at-
tempt to identify methods that could perhaps be used to both increase the performance of the
machine and reduce the cost of the facility. Some aspects of this work have been reported
at the PAC 2001 [5] and Snowmass 2001 conferences [6].

2 Design Strategy
Our design philosophy of this electron-positron collider will be to to avail of the maximum
RF power available and operate at the beam-beam limit The synchrotron radiation power
lost by both beams, each with beam current I is

PT = 2Cγ
E4I

eρ
, Cγ =

4π
3

re
(mec2)3

= 8.86× 10−5 [m/GeV3] (2.1)

Assuming that there areMb bunches in each beam with bunch intensitiesNb, the luminosity
is

L =
frev
4π

MbN
2
b

σ∗xσ
∗
y

(2.2)

We will assume flat beams so that σ∗y � σ∗x. With this assumption, the vertical beam-beam
tune shift is

ξy =
re
2π

Nbβ
∗
y

γσ∗xσ
∗
y

(2.3)

Eliminating one power of Nb from the expression for the luminosity, we can write

L =
1

2ere
ξy
β∗y
γI (2.4)

I is the beam current in a single beam. Our strategy as stated earlier is that as we change
parameters, PT and ξy will be held constant.
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Using Equation (2.4) to eliminate the current, we obtain the following equation for the
luminosity and energy in terms of the fixed parameters and the bending radius ρ,

Lγ3 =
3

16πr2
e(mec2)

ξyPT
β∗y

ρ (2.5)

This equation relates the parameters important to the physics program viz. the luminosity
and energy to the machine size, optics and beam parameters. For example at constant lumi-
nosity, this equation shows that the maximum allowable energy increases only with the cube
root of the radius, the radiated power or the beam-beam parameter. In the above equation
β∗y may be assumed constant at different energies only if the IR quadrupoles do not pose an
aperture limitation in the vertical plane at any energy. We will assume that to be the case.

Similarly Equation (2.5) shows that the luminosity of the collider at a given energy and
radiated power PT can only be increased by increasing the beam-beam tune shift, ξy and/or
loweringβ∗y . Other limits can however prevent the machine from operating at the maximum
theoretical luminosity, for example, limits on the the maximum current in each bunch at
injection.

2.1 Bunch intensity limitations

The dominant limitation on the bunch intensity at collision energy arises due to the beam-
beam interactions. We have incorporated this constraint in our scaling of the luminosity
with energy, Equation (2.5). Another limitation that is more severe at injection energy is
the Transverse Mode Coupling Instability (TMCI). As in the classical head-tail instability,
synchrotron motion which exchanges particles in the head and tail of the bunch drives the
instability but this instability can arise even with zero chromaticity. In the presence of trans-
verse impedances (typically wall resistivity), the wake forces excited by particles in the head
can exert strong enough forces on the tail such that betatron modes ωβ +mωs are modified.
Typically, at the threshold intensity of the instability, the modes m = 0 and m = −1 be-
come degenerate. TMCI is known to limit the bunch current in LEP to below 1 mA [4].
More extensive discussion of TMCI can be found in [7].

The threshold bunch current is given by

ITMCI
b ' 8frevνsE

e
∑
i βik⊥ i(σs)

(2.6)

where νs is the synchrotron frequency, the sum in the denominator is over tranverse impedances
and k⊥ i is a bunch length dependent transverse mode loss factor. Obviously higher syn-
chrotron frequencies and longer bunches increase the threshold intensity. At LEP larger RF
voltages are used to increase νs while emittance wigglers are used to increase the bunch
length at the injection energy of 20 GeV. Compared to LEP, the very large lepton collider
has a revolution frequency that is an order of magnitude smaller while the synchrotron fre-
quency, injection energy and bunch length are comparable. If the impedances in LEP and
this large ring are comparable, we may expect an order of magnitude reduction in the thresh-
old current for this ring.

E. Keil[9] and G. Dugan[10] have estimated the threshold current for this large collider
following the model of LEP. The dominant sources of broadband impedance will be the RF
cavities, bellows and the resistive wall. LEP has bellows placed every 10 m around the ring.
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Assuming a similar placing and the same loss factors of the cavities and bellows as in LEP,
the loss factor in the bellows would be an order of magnitude larger than that in the cavities.
At a bunch length of 1 cm the threshold current would reduce to around 0.01 mA. The num-
ber of bellows therefore should be kept to a minimum. Improvements in the vacuum system
design may in fact allow the complete elimination of these bellows or at least to space them
every km or so (see Section 11). In this case, the cavities and the resistive wall contribute
about equally to the loss factor in this large ring. Dugan estimates that at an injection en-
ergy of 46 GeV (this will be discussed in Section 8) and in an elliptical chamber with aspect
ratio of 2.5, the threshold current, ITMCI

b , will be above 0.2 mA if the chamber half-height
exceeds 4.8 cm. We will assume a design current of 0.1 mA to allow for a safety margin of
100%. It is worth noting that various schemes have been proposed to combat TMCI for the
low-field hadron collider [11], e.g. starting with lower intensity bunches at injection energy
and coalescing at higher energy, feedback systems etc. If required we may also use one of
these compensation schemes to allow a bunch current of 0.1 mA.

2.2 Beam intensity limitations

The available RF power determines the beam current to zeroth order. This constraint will
be used in the design strategy in this report. However there are other sources of limitations
which need to be considered as the design evolves. Perhaps the most important of these
secondary limitations is the available cryogenic cooling power. We will assume that super-
conducting cavities will be used. The dynamic heat load on these cavities includes contri-
butions from the RF dissipation and the beam induced heat load from both beams. These
two sources lead to a power dissipation given by

Pdynamic = Ncav
V 2
RF

(R/Q)Q
+ 2Rm(σs)IbIe (2.7)

whereNcav is the number of cavities, (R/Q) is the normalized shunt impedance per cavity,
Q is the unloaded quality factor of the cavities which depends on the operating temperature
and the field gradient, Rm is a bunch length dependent loss impedance of the cavities, Ib
is the bunch current, Ie is the single beam current. The available cryogenic power must
be sufficient to cope with this load which has a contribution that increases with the beam
current. The total higher order mode (HOM) power PHOM ∝ IbIe that could be absorbed
by the superconducting cavities was another restriction on the total beam current at LEP. An
upgrade of the couplers and RF cables was required to cope with this limitation. Clearly the
design of the cavities for the future lepton collider should take advantage of the experience
gained while operating LEP.

2.3 Synchrotron radiation power and beam-beam limited regime

Here we specify the design strategy keeping the beam-beam parameter and the synchrotron
radiation power constant. The beam-beam parameter depends on the bunch intensity while
the power depends on the beam intensity. Hence we will determine the bunch intensityNb

from ξy and the number of bunches Mb from PT while ensuring that the maximum bunch
intensity stays below the threshold required to avoid the transverse mode coupled instability.

Writing the emittances in the transverse planes as

εy = κεx
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where κ is the coupling ratio, the bunch intensity can be expressed as

Nb =

(
2π
re

√
κβ∗x
β∗y

ξy

)
γεx (2.8)

where the factors within brackets are assumed to stay constant. One could imagine another
scenario with optics changes where β∗x, β

∗
y, κ are allowed to vary.

The equilibrium emittance εx is determined by the equilibrium between damping and
quantum fluctuations and is given approximately by

εx =
Cq
Jx

R

ρ

γ2

ν3
x

, Cq =
55h̄c

32
√

3(mec2)
= 3.83× 10−13[m] (2.9)

Here R is the average radius of the arc assumed to be made of periodic structures such as
FODO cells and νx is the arc tune. IfLc, µc are the length of each periodic cell and the phase
advance over the cell respectively, then

νx =
2πR
Lc

µc
2π

= R
µc
Lc

(2.10)

Hence

εx =

(
Cq
Jx

R

ρ

[
Lc
µc

]3
)
γ2

R3
(2.11)

The factor R/ρ - the ratio of the arc radius to the bend radius - can be treated as constant.
Typically it has a value somewhere between 1.0 and 1.25. The arc radius is determined from
the machine circumference C in terms of a filling factor f1. Thus

R = f1
C

2π
, and ρ = f2R , f1, f2 < 1 (2.12)

where f1, f2 are held constant. Since we do not make optics changes at different stages, we
will treat the factor in brackets in Equation(2.11) as constant. The energy in this relation is of
course determined from the energy luminosity relation Equation (2.5). Once the emittance
is known, the bunch intensity is calculated from Equation (2.8).

The beam current I and the number of bunches are related as I = efrevMbNb, hence
the maximum number of bunches is found from the total synchrotron radiation power as

Mmax
b =

(
PT
2Cγ

)
ρ

frevNbE4
(2.13)

The factors in brackets are constant while the other factors change with the machine circum-
ference.

2.4 RF parameters

There are two requirements on the RF voltage parameters. The first requirement on the volt-
age is that the energy gained due to the RF per turn must equal to the energy lost per turn.

eVRF sinφs = U = Cγ
E4

ρ
(2.14)
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where Cγ = (4π/3)re/(mec
2)3 = 8.86× 10−5 m/GeV3. The second requirement is that

the RF acceptance ∆ERF must be a certain number, say NQL, times the rms energy spread
σE for an acceptable quantum lifetime,

∆ERF = NQLσE (2.15)

or √
1

πhηslip
eVRFEG(φs) = NQL

√
Cq
Jsρ

E2

mec2
(2.16)

where
G(φs) = 2 cosφs − (π − 2φs) sinφs (2.17)

Js is the longitudinal damping partition number. Typically we require NQL ∼ 10. These
two conditions can be solved to find the synchronous phase as the solution of the transcen-
dental equation

cotφs + φs −
π

2
− 55

√
3

256
hηslip
Jsαf

N 2
QL

γ
= 0 (2.18)

where αf = e2/(4πε0h̄c) = 1/137.04 is the fine structure constant. This equation can be
solved numerically. Once the synchronous phase is known, the RF voltage can be found
from Equation (2.14).

The RF frequency or the harmonic number is related to the desired bunch spacing. In
order to accomodate both beams symmetrically around the ring, it is required that the bunch
spacing be an even multiple of the RF wavelength. This in turn requires that the harmonic
number be an even multiple of the number of bunches. The choice of RF frequency influ-
ences the energy acceptance (∆E/E)accep because (∆E/E)accep ∝ 1/

√
h so lower RF

frequencies increase the acceptance. However two economical factors argue for higher fre-
quencies: (1) smaller frequencies increase the size and hence the cost of the cavity and (2)
high power klystrons are more cost effective above frequencies of 300 MHz. In supercon-
ducting cavities the frequency is limited from above by several factors: (1) cavity losses
increase with frequency, (2) longitudinal and transverse shunt impedances scale like ωRF
and ω2

RF respectively, (3) the ratio of the energy removed by a bunch from the cavity to the
stored energy in the cavity also increases with frequency. In this paper we will consider RF
frequencies in the neighbourhood of 352 MHz.

2.5 Optics

2.5.1 Arc optics

The choice of phase advance per cell µc and the length of a cell Lc are crucial design pa-
rameters. The equilibrium emittance decreases as the phase advance increases, reaches a
minimum at 135◦ and then increases again at larger values of µc. The horizontal dispersion
also decreases with increasing phase advance and shorter cell lengths. Conversely, stronger
focusing also increases the chromaticity and hence the strength of the sextupoles required
to correct the chromaticity. Strong sextupoles can limit the available dynamic aperture. For
these reasons, the choice of phase advance per cell in electron machines is usually limited
in the range of 60◦ ≤ µc < 120◦. For example, LEP started operation with (60◦, 60◦) phase
advances in the (x, y) planes at 46 GeV, and since then has used (90◦, 60◦), (90◦, 90◦) and
(102◦, 90◦) phase advances at higher energies.
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Another parameter affected by the choice of optics is the threshold current for TMCI.
From Equation (2.6) we observe that ITMCI

thresh ∝ νs/(
∑
i βik⊥ i). To estimate the depen-

dence on µc, Lc we replace βi by the average value in a FODO cell 〈β〉 = Lc/ sinµc.
The synchrotron tune νs ∝

√
αC where αC is the momentum compaction. Since αC ∝

1/ sin2(µc/2), we find

ITMCI
thresh ∝

νs
〈β〉 ∝

1
Lc

cos
(
µc
2

)
(2.19)

Hence the TMCI threshold is raised with shorter cell lengths and smaller phase advance per
cell.

In this paper we will choose the phase advance per cell µc = 90◦ and then choose a cell
length Lc so that the bunch intensity does not exceed a certain threshold set by the TMCI.
We will develop parameter sets (luminosity, energy, RF voltages,...) for different machine
circumferences in this paper. As we increase the ring circumference µc, Lc will be assumed
constant while the revolution frequency decreases and the bunch intensity always stays be-
low the TMCI threshold.

The phase advance per cell is one way of controlling the equilibrium emittance. An-
other way is to redistribute the equilibrium emittance between the horizontal and longitudi-
nal planes by changing the RF frequency. In an lattice constructed entirely of FODO cells,
the change of partition number with momentum deviation is given by

dJx
dδ

= −dJs
dδ

= −4
LD
LQ

[
2 + 1

2 sin2 µC/2
sin2 µC/2

]
(2.20)

whereLD, LQ are the length of dipoles in a half cell and length of a quadrupole respectively.
Writing Jx(δ) = Jx(0) + (dJx/dδ)δ + . . ., we observe that reducing the emittance εx by
half requires increasing the damping partition number to Jx(δ) = 2Jx(0) or a momentum
shift of δ∆Jx=1 = 1/(dJx/dδ) if initially Jx(0) = 1. The required RF frequency shift is
related to the momentum deviation δ by

∆fRF
fRF

= −∆R
R

= −αCδ (2.21)

While the horizontal emittance can be changed by an appropriate shift in RF frequency, there
is also a change in the radial excursion ∆R of the beam. It is important to keep this as small
as possible both to minimize a loss in physical aperture and avoid a significant reduction in
the transverse quantum lifetime. A lower phase advance per cell and a shorter quadrupole
length relative to the dipole length, i.e. weaker focusing, help to keep the relative change in
RF frequency and radial excursion small. As an example we consider the 233 km ring whose
parameters will be given later in Section 6. With LD = 94.70 m, LQ = 0.49 m, µC =
90◦, αC = 0.23 × 10−4, we find the damping aperture to be δ∆Jx=1 = 2.9 × 10−4. The
corresponding radial excursion is about ∆R = 0.20 mm. Since this changes the damping
partition number by one, we can write this as the change in damping partition per unit of
radial excursion,

∆Jx
∆R

= 5.0 /[mm]

Thus radial excursions of the closed orbit by only fractions of a mm are sufficient to change
the damping partition number by a unit or more.

An alternative method of reducing the transverse emittances is to place a damping wig-
gler in a region where the dispersion vanishes. Conversely the emittance could be increased
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if required, e.g. to reduce the beam-beam tune shift, by placing the wiggler where the dis-
persion is non-zero.

If the horizontal emittance is reduced by any method, the energy spread increases which
decreases the energy resolution of the experiments and also the longitudinal quantum life-
time if the RF voltage is kept constant. This places constraints on the allowed emittance
manipulations.

Synchrotron radiation in quadrupoles may be an issue. If the gradient is sufficiently
large, then paricles with large betatron amplitudes may radiate enough energy that they are
lost from the RF bucket. This was termed the radiative beta-synchrotron coupling (RBSC)
[12]. A rough measure of this effect [14] is the ratio of the field in a quadrupole at an ampli-
tude equal to the rms beam size to the dipole bend field. To ensure that this effect is within
bounds, the quadrupole gradient will be limited from above by requiring that this ratio not
exceed unity.

2.5.2 Interaction Region

A detailed design of the IR must include the focusing scheme to obtain the desired spot sizes,
a beam separation scheme, the collimation and masking scheme to protect components from
synchrotron radiation, local chromaticity correction if required, the interface with the de-
tectors etc. Here we will consider only the basic optics parameters. The lower limit on β∗

is usually determined by the maximum tolerable beam size in the interaction region (IR)
quadrupoles and the chromaticity generated by these quadrupoles. Furthermore to prevent
the loss of luminosity due to the hourglass effect, β∗ should be significantly greater than the
bunch length. A preliminary IR design [15] shows that it is possible to achieve β∗y = 1 cm
with sufficient momentum aperture. This was done with an IR design where the dispersion
at the IP was made to vanish but the slope of the dispersion at the IP was allowed to be non-
zero. Sextupoles placed next to the IR doublet quadrupoles start the chromaticity correction
within the IR itself. A more precise estimate of the tolerable minimum β∗y requires tracking
to determine the dynamic aperture of the machine with realistic arc and IR magnets.

Here we will assume that β∗y � β∗x as is true at most e+ − e− rings. Consequently
aperture and chromaticity limitations will first arise in the vertical plane. As stated earlier
in this section we will consider fixed values of β∗x, β

∗
y at all circumferences and energies and

assume that these do not pose aperture restrictions at any energy. These values will need to
be reconsidered during the design of the final focusing system.

The choice of β∗y/β
∗
x needs to be closely related to the emittance coupling ratio κ =

εy/εx. The horizontal beam-beam parameter is related to the vertical parameter as

ξx =

[√
κ

β∗y/β
∗
x

]
ξy (2.22)

If κ > β∗y/β
∗
x, then ξx > ξy . In this case the beam-beam limit is reached first in the hor-

izontal plane. Beyond this limiting current, the emittance grows linearly with current and
the beam-beam parameters stay constant. In particular the vertical beam-beam parameter ξy
never reaches its maximum value and since the luminosity is proportional to ξy, the maxi-
mum luminosity is not obtained. It is therefore desirable to have κ ≤ β∗y/β∗x. In this paper
we will consider the so called optimal coupling scenario where κ = β∗y/β

∗
x and the beam-

beam limits are attained simultaneously in both planes, ξx = ξy.
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2.6 Summary of design strategy

The design of the ring optics depends on a number of parameters, among these are the max-
imum synchrotron radiation power allowed by the facility, the maximum beam-beam pa-
rameter which is assumed, the number of IPs required to satisfy the user community (and
saturate the tolerable beam beam tune shift), the maximum bunch intensity limited by TMCI.
In addition the minimum beta functions at the interaction point, β∗x, β

∗
y , the emittance cou-

pling ratio κ = εy/εx = β∗y/β
∗
x, must be specified. The arc design is determined by the

arc filling factor f1 and ring filling factor f2, which can be realized in a realistic design, the
phase advance per cell µC , and the required rf voltage determined byNQL - the ratio of RF
bucket height (energy acceptance) to rms energy spread.

The design values for a first iteration can be produced from these requirements. For a
given machine circumference C, determine the bend radius ρ and arc radiusR from Equa-
tion (2.12) with assumed values of f1, f2. The maximum energy of the ring at this circumfer-
ence can then be determined from Equation (2.5). The equilibrium emittance at this energy
and required maximum bunch intensity from Equation (2.8) can be calculated and compared
with the maximum bunch current allowed by ITMCI

thresh . The cell length can be obtained from
Equation (2.11). The maximum number of bunches can be obtained from Equation (2.13).
The maximum quadrupole gradient tolerableB′max is found from

B′maxσx
B0

= 1

where σx is the rms horizontal beam size in the arcs and B0 is the bend field. The values
obtained must then be checked for internal consistancy and collider performance.

3 Lifetime

The radiative Bhabha scattering process e+e− → e+e−γ is expected to dominate the beam
lifetime at collision in this large lepton collider. The lifetime from this process with a scat-
tering cross-section σe+e− is

τL =
1

NIP

MbNb

Lσe+e−
(3.1)

Substituting for the luminosity from Equation (2.4) we can write this in terms of the beam-
beam parameter ξy as

τL =

[
2re
NIP

β∗y
ξy

1
σe+e−

]
1

γfrev
(3.2)

The cross-sectionσe+e− has a weak logarithmic dependence on energy (see Equation (A.24)
in Apendix A) which can be ignored to first order. Assuming that β∗y, ξy are constant, the
terms in square brackets above can be considered nearly constant. At a fixed circumference,
the luminosity lifetime decreases with approximately the first power of the energy.

There are other contributionsto the beam lifetime such as beam-gas scattering and Comp-
ton scattering off thermal photons but those lifetimes are about an order of magnitude larger
than the luminosity lifetime considered above. For present purposes those effects can be
ignored but need to be considered at a later stage.
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4 Scaling of the beam-beam parameter

Although a value of the beam-beam tune shift of ξx ∼ ξy ∼ 0.03 - 0.06 has described the
operation of almost all lepton colliders over the past 20 years, recent results at LEP have
shown that large colliders at high energies behave somewhat differently. The LEP machine
operated at tune shifts around ξx ∼ ξy ∼ 0.08, and, in fact, did not reach the beam-beam
limit when operated at energies around 100 GeV [16]. Since the machine described here
is even larger and higher in energy than LEP, we consider how the LEP tune shifts can be
extrapolated for operation at the highest energies.

Our use of the term “beam-beam limit” will be the conventional one. At this limit, the lu-
minosity increases only linearly with beam intensity rather than quadratically and the beam-
beam parameter reaches a constant value. There are other beam-beam related phenomena
which can prevent this limit from being reached. These may be due to small dynamic aper-
ture, growth of non-Gaussian tails and coherent effects [16]. At LEP these phenomena were
important at energies around 46 Gev but less so at higher energies. We assume that such ef-
fects are either negligible or adequately compensated in the following discussion.

The limiting value of the beam-beam parameter depends in a fundamental way on the
damping time. The damping time τs determines the time it takes for the beam to reach an
equilibrium distribution in the absence of external nonlinear forces. As the damping in-
creases and this time decreases, the beam becomes more immune to non-resonant perturba-
tions that would change this equilibriumdistribution. Indeed observations at several e+−e−
colliders have shown that the limiting value of the beam-beam parameter increases slowly
with energy or more precisely with the damping decrement. The damping decrement for
beam-beam collisions is defined as the inverse of the number of beam-beam collisions per
damping period,

λd =
1

NIP τ̃s
=
CγE

3

NIPρ
(4.1)

where τ̃s is the damping time measured in turns. There exists no reliable theory as yet which
predicts how the beam-beam limit depends on λd. Keil and Talman [17] and more recently
Peggs [13] considered the scaling of the beam-beam parameter with λd applied to data from
earlier machines such as SPEAR, PETRA, CESR and found roughly the power law be-
haviour: ξy,∞ ∼ λ0.3

d .
In Appendix B we discuss a simple model where we treat the beam-beam kicks in the

limit of high damping as random kicks analogous to the kicks produced by photon emis-
sion. The betatron phase is assumed to follow a white noise process as a consequence. As
expected, this assumption over-estimates the equilibrium emittance. If we soften this and
allow for phase correlation which multiplies the correction by an undetermined factor less
than unity, then the beam-beam parameter depends on the bunch intensity as

ξy =
2ξy,0

1 +
√

1 + 8Γ(Nbre/γε0)2/λd
(4.2)

where Γ is the undetermined fit parameter and ξy,0 = reβ
∗
yNb/(2πγσ∗xσ

∗
y) is the conven-

tionally defined parameter. In the limit of small bunch intensity, ξy = ξy,0 while at large
intensities,

ξy,∞ = lim
Nb→∞

ξy =
1 + κ

2π

√
β∗y
κβ∗x

√
λd
2Γ

(4.3)
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Figure 1: Scaling of the asymptotic beam-beam parameter with the damping decrement when
ξy,∞ ∝ λ0.4

d . The beam-beam parameters achieved at LEP are also shown. The beam-beam limit
at LEP was reached only at the energy of 45.6 GeV. Assuming 2 IPs in the VLLC, λd = 0.011,
ξy,∞ = 0.137 at 200 GeV while if there is only 1 IP, then λd = 0.022, ξy,∞ = 0.178 also at 200
GeV.

This asymptotic value depends only on the obvious lattice parameters, the damping decre-
ment λd and the fit parameter Γ but is independent of the intensity.

In reference [18], Assmann and Cornelis without specifying the model wrote down the
following expression for the beam-beam parameter in terms of the bunch current

ξy =
Ib√

A+ (BIb)2
(4.4)

The constantA is related to the emittances at zero current while the fit parameter B deter-
mines the asymptotic beam-beam parameter, ξy,∞ = 1/B. This expression (4.4) is close
to but not exactly the same as Equation (4.2). Using Equation (4.4), Assmann and Cornelis
find a good fit to the LEP data on the achieved beam-beam parameter at high energies. From
this fit, the asymptotic beam-beam limit is inferred to be ξy,∞ = 0.11 at energies in the range
98-101 GeV. From this value and the observed beam-beam limit ξy,∞ = 0.045 at 45.6 GeV,
a power law dependence is found as

ξy,∞ ∝ λ0.4
d . (4.5)

We use this scaling law to determine the beam-beam limit at each energy of interest. Figure
1 shows this power law curve and also the expected beam-beam asymptotic limits for two
cases in the VLLC at 200 GeV and a circumference of 233 km. The damping decrement
assuming 2 IPs is 0.011 which implies ξy,∞ = 0.137 while with 1 IP λd = 0.022 and the
expected ξy,∞ = 0.178. Note that LEP operated with 4 IPs, so the total beam-beam tune
shift in LEP at the highest energies was around 0.3.
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5 Polarization

In a storage ring electrons become vertically polarized via the emission of synchrotron ra-
diation. In a perfect ring - planar and without errors - this polarization would build up to a
maximum value of 92.4%. In a real ring - nonplanar, misalignments and field errors - the
maximum achievable polarization can be significantly less. The emission of photons with
a very small probability of spin flip while leading to polarization also leads to depolariza-
tion in the presence of imperfections. The stochastic changes in electron energy after photon
emission and coupling to the orbit motion lead to spin diffusion and loss of polarization. In
the presence of depolarizing effects, the maximum value of the polarization along the equi-
librium spin direction n̂ is given by the expression due to Derbenev and Kondratenko [19]

P∞ = − 8
5
√

3

∮
ds〈 1
|ρ(s)|3 ŷ · (n̂− ∂n̂/∂δ)〉s∮

ds〈 1
|ρ(s)|3 [1− 2

9(n̂ · ŝ)2 + 11
18(∂n̂/∂δ)2]〉s

(5.1)

where δ = ∆p/p and 〈〉s denotes the average over phase space at a location s. We note
that n̂ is a vector field which changes with location in phase space. The polarization rate is
approximately [20]

1
τ

=
1
τST

+
1

τDep
(5.2)

1
τST

=
8

5
√

3
e2γ5h̄

m2
ec

2

1
C

∮
ds〈 1
|ρ(s)|3 [1− 2

9
(n̂0 · ŝ)2]〉s (5.3)

1
τDep

=
8

5
√

3
e2γ5h̄

m2
ec

2

1
C

∮
ds〈 1
|ρ(s)|3

11
18

(∂n̂/∂δ)2〉s (5.4)

When n̂0 is nearly vertical, then n̂0 · ŝ is small compared to unity and assuming that the
bend radius is everywhere the same, the Sokolov-Ternov polarization rate [21] reduces to
the simplified expression

1
τST
≈ 8

5
√

3
e2h̄

m2
ec

2

γ5

ρ3
(5.5)

The time to build up to the asymptotic polarization falls sharply with increasing energy but
increases as the cube of the bend radius. The energy ratio between this collider and LEP
is between two to three while the radius is nearly an order of magnitude larger than LEP.
Consequently the polarization build up time in this machine will be a few hours compared to
approximately 6 minutes at 100 GeV in LEP. Polarization may still be a practical possibility
but that is primarily determined by the value of the achievable asymptotic polarization.

The key to calculating the asymptotic polarization P∞ in a real machine lies in the cal-
culation of the spin-orbit coupling vector ∂n̂/∂δ. This depends on the detailed lattice con-
figuration and there are several sophisticated programs which do this [20, 22].

Attaining the maximum polarizationpossible requires a combinationof methods, as used
for example in HERA [25] and LEP [26]. These include:

• Tight alignment tolerances on all magnets, specially in the vertical plane.

• Extremely good correction of the vertical closed orbit distortions and the vertical dis-
persion.

• Careful selection of the tunes, e.g. the energy should be chosen so that the fractional
part of the spin tune (approximately equal to aγ) is close to 0.5. At energies near 185
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GeV, this would specify an energy of 184.84 GeV. The tunes in all planes should be
chosen so that the resonance conditions

νspin = k +mxνx +myνy +msνs

are far from satisfied especially for 1st order resonances |mx|+|my|+|ms| = 1, high
order synchrotron sidebands to the integer resonances mx = my = 0, and low order
synchrotron sideband resonances of 1st order betatron resonances |mx|+ |my| = 1.

• Harmonic spin matching and minimizing the spin orbit coupling will be essential. A
sequence of vertical orbit correctors and dispersion correctors is used to generate har-
monics which compensate the integer and linear spin resonances driven by the imper-
fection fields. These correction methods are more effective when each section of the
ring is locally “spin transparent”. This would place constraints on the phase advances
and other Twiss functions in these sections.

Observations at several e+−e− rings have shown that the maximum polarization drops
with energy. For electrons, integer resonances are spaced 0.44 GeV apart so the larger en-
ergy spread at higher energies leads to a larger portion of the resonance to be spanned by
the beam distribution. However prediction of the drop in polarization with energy is com-
plicated and there does not exist a simple analytical way to extract the energy dependence
of n̂ in general. If however we assume that both orbital and spin motion is approximately
linear, then examination of the spin-orbit coupling matrices (the G matrices in [20]) shows
that ∂n̂/∂δ ∝ γ2. Using Equation (5.1) this implies [23, 24] that the asymptotic polarization
scales as

P∞ =
8

5
√

3
1

1 + βE4
(5.6)

Here β is a parameter which does not depend on energy. Experience has shown that this
relation is nearly true if the motion is linear and the closed orbit is well corrected. This scal-
ing law will be violated if either the orbital motion or the spin motion is strongly nonlinear.
Observations at LEP show a sharp fall off in polarization above 46 GeV and polarization at
the level of a few % at 60 GeV.

It is clear that if polarization is desired, the lattice must be designed from the outset to
achieve this. Further studies are required however to examine whether, even with the use
of the methods outlined above, respectable levels of polarization will be achievable at the
energies of interest. An initial study on expected polarization in this ring may be found in
the paper by Assmann [27].

6 Design Parameters at High Energy
The design strategy has been outlined in Section 2. We know for example that at fixed lu-
minosity, synchrotron radiation power and beam-beam parameter that the maximum energy
of the beams scales with the cube root of the circumference. Here we apply this strategy to
different machines with circumferences in the range from 200 km to 300 km. This should
span the range envisoned for different versions of the VLHC.

One feature of the design that needs some iteration is the initial choice of the beam-beam
parameter. We have seen in Section 4 that the maximum beam-beam parameter scales with
some power of the energy. Since the beam energy is an output parameter, we need to ensure
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Figure 2: The maximum energy attainable as a function of the machine circumference for three
different luminosities. At the energies obtainable with luminosities of 1033 cm−2sec−1 and
lower, the maximum beam-beam parameter was set to 0.1. At the luminosity of 1034 cm−2sec−1,
the beam-beam parameter was set 0.05. The synchrotron radiation power of both beams was set
to 100MW in all cases.

that the choice of the beam-beam parameter is self-consistent with the design energy. In
order to maximize the luminosity we will assume that there is a single IP in the ring.

Figure 2 shows the maximum energy as a function of the circumference for three dif-
ferent luminosities. For example at a circumference of 233 km, the maximum single beam
energies at luminositiesof 1033, 5×1033, 1034 cm−2sec−1 are 602, 258 and 152 GeV respec-
tively. Thus a ring with circumference around 233 km should suffice to reach the top quark
production threshold, estimated to be at 360GeV, with a luminosity higher than 5 × 1033

cm−2sec−1. We observe that single beam energies from 570-650 GeV appear attainable at
a luminosity of 1033cm−2sec−1. However the RF voltages required in this range of energies
are in the hundreds of GV as seen in Figure 3. In the range of 245-280 GeV per beam and
luminosity 5× 1033 cm−2sec−1, the RF voltages are a few GV, comparable to LEP.

Figure 4 shows the e− − e+ bremmstrahlung lifetime as a function of circumference at
three luminosities. We observe that at a luminosity of 5 × 1033 cm−2sec−1, and energies
between 245-280 GeV, this lifetime is between 3-4 hours. The lifetime was calculated using
the expression (A.24) for the bremmstrahlung cross-section which does not have corrections
from a cut-off parameter which corresponds to the characteristic distance between particles
in the bunches. With this cut-off the cross-sections are typically 30% lower. For example
analysis of the cross-section at LEP energies [51] showed that the uncorrected cross-section
of 0.3 barns was reduced to 0.2 barns. This number was found to agree well with measure-
ments. As a consequence of the smaller cross-section, luminosity lifetimes may be about
30% higher than shown in Figure 4. Without this correction, the lifetime in the energy range
from 100 - 200 GeV varies from 19 - 5 hours respectively. By comparison, the luminosity
lifetime at LEP was about 5-6 hours.
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Table 1 shows the design parameters at 200 GeV in a 233 km ring obtained by following
the design strategy outlined in Section 2. We remark on some of the interesting features of
this ring compared to LEP.

• Increasing the circumference of LEP (by a factor of 8.5) and the total synchrotron ra-
diation power (by about 7) while lowering the β∗y (by a factor of 5) allows an increase
in luminosity by almost two orders of magnitude at almost double the energy.

• The bunch current in VLLC is roughly 7 times lower in keeping with the expected
lower threshold for TMCI.

• The e+− e− bremmstrahlung lifetime in VLLC is slightly lower at 5 hours. The ring
will need to be refilled approximately every couple of hours in order to maximize the
integrated luminosity.

• The vertical beam sizes in the two machines are comparable The horizontal beams
sizes in the arcs of the two machines are also close. Hence vacuum chamber dimen-
sions in VLLC can be similar to those in LEP.

• The main dipole field is about 5 times weaker than that of LEP. Iron magnets oper-
ated at room temperature will suffice. Conversely, good shielding from stray magnetic
fields, e.g. the earth’s field, the fields of the low field hadron collider, will be critical.

• The critical energy is smaller in VLLC so shielding against synchotron radiation as in
LEP should be adequate for VLLC. The photon flux per unit length is almost the same
in the two machines.

• The RF voltage required for VLLC is higher at 4.85GV compared to 3.1GV for LEP.
We chose an energy acceptance that is ten times the equilibrium energy spread of the
beam to ensure sufficient quantum lifetime. At LEP with the parameters given in Table
1, this ratio is only about 6.6. If we assume this value for the 233 km ring, the RF
voltage is lowered from 4.85 GV to 4.66 GV. The energy loss per turn requires that
the RF voltage be greater than 4.4 GV.

• We chose optimum coupling, i.e. εy/εx = β∗y/β
∗
x = 0.01 which implies that ξx = ξy.

Operating at the beam-beam limit in both planes might well be challenging. If we
reduce the emittance coupling to half this value, εy/εx = 0.005, then ξx = 0.127
while staying at the beam-beam limit in the vertical plane ξy = 0.18. With this choice,
optics and beam size parameters change, e.g. εx = 4.4 nm, cell length= 222.6 m,
σmaxx = 1.29 mm, Dmax

x = 0.97 m, νs = 0.096, σs = 7.2 mm. The RF voltage
increases to 4.92 GV while most other parameters are relatively unaffected.

7 Instabilities
RF cavities, the vacuum chamber and bellows are likely to be the major sources of impedance
in this ring. BPMs, collimators, kickers, separators, synchrotron radiation masks, vacuum
ports etc. will be other sundry sources of impedance. A detailed impedance budget will be
required as the design of these elements proceeds. Here we will consider only the major
sources of impedance and the thresholds of likely instabilities. The instability growth rates
will be evaluated at the injection energy of 46 GeV where they are the largest.
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e+ − e− Collider Parameters
Parameter LEP 1999 VLLC
Circumference [m] 26658.9 233000.
β∗x, β

∗
y [cm] 150, 5 100, 1

κ/(β∗y/β
∗
x) 0.31 1.0

Luminosity [cm−2sec−1] 9.73×1031 8.8×1033

Energy [GeV] 97.8 200.0
Emittances εx, εy [nm] 21.1, 0.220 3.09, 0.031
RMS Beam size at IP σ∗x, σ

∗
y [µm] 178., 3.30 55.63, 0.56

Bunch intensity/current [ /mA] 4.01×1011/0.720 4.85×1011/0.10
Number of bunches per beam 4 114
Bunch spacing [km] 6.66 2.04
Total beam current (both beams) [mA] 5.76 22.8
Beam-beam tune shift ξx, ξy 0.043, 0.079 0.18, 0.18
Number of IPs 4 1
e+e− bremmstrahlung lifetime [hrs] 6.0 4.8

Dipole field [T] 0.110 0.0208
Bend Radius [m] 3026.42 32073.17
Phase advance per cell µx, µy [degrees] 102, 90 90.0
Cell Length [m] 79.110 198.35
Total length of dipoles in a cell [m] 69 184.46
Quadrupole gradient [T/m] 9.50 20.0
Length of a quadrupole [m] 1.60 0.476
Arc σmaxx , σminx [mm] 1.70, 0.60 1.02, 0.42
Arc dispersionDmax, Dmin [m] 1.03, 0.450 0.77, 0.37
Bend radius to Machine radius 2πρ/C 0.710 0.86
Momentum compaction 1.60×10−4 1.54×10−5

Polarization time [hrs] 0.1 2.83

Energy loss per particle per turn [GeV] 2.67 4.42
Critical energy [keV] 686. 514.6
Longitudinal damping time [turns] 73.0 45
RMS relative energy spread 1.52×10−3 9.57×10−4

Bunch length [mm] 11.0 6.67
Synchrotron tune 0.116 0.082
RF Voltage [MV] 3050.00 4852
RF frequency [MHz] 352.209 352
Revolution frequency [kHz] 11.245 1.287
Synchrotron radiation power - both beams [MW] 14.5 100.7
Available RF power [MW] 34.1
Power load from both beams [kW/m] 0.820 0.46
Photon flux/length from both beams [/m/sec] 2.40×1016 0.91×1016

Table 1: Parameters of the very large lepton collider with a circumference of 233km.
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7.1 Transverse Mode Coupling Instability

This instability determined by the transverse broadband impedance in the ring is the most
important one and sets the upper limit on the single bunch current. Dugan’s analysis [10]
showed that a vacuum chamber half-height of 4.8 cm was required to obtain a threshold cur-
rent of 0.2 mA at an injection energy of 46 GeV. The major assumption was that the bellows
were placed no closer than 955 m so the loss factors from the bellows was limited to 100
V/pC/m. The parameters of the ring have changed somewhat since that analysis so we will
reconsider the limits on the vacuum chamber and the bellows.

The effective transverse impedance of the elliptical beam pipe is obtained by integrating
the impedance Z⊥(ω) over the bunch spectrum,

Im[Z⊥]eff =
∫∞
−∞ Im(Z⊥)hm(ω) dω∫∞

−∞ hm(ω)
(7.1)

where hm is the bunch power spectrum of mode m. Since the modes coalesce at m = 0,
we use h0 = exp[−(ωσt)2]/(2π). After the integrations using an approximate expression
for Z⊥ for an elliptical beam pipe, the effective impedance is [10]

Im[Z⊥]eff ' −
Γ(1/4)
2
√

2π3
(

1
b3

+
1
a3

)C
√
cµ0σsρ (7.2)

where a, b are the half-height and half-width respectively of the vacuum chamber, C is the
circumference, µ0 is the permeability of vacuum and ρ is the resistivity of the beam pipe
material. The threshold current for the onset of TMCI due to the resistive wall impedance
is

IRWth =
16πνs(E/e)
βIm[Z⊥]eff

σs
C
' 64

√
2π7

Γ(1/4)

√
σs
cµ0ρ

νβνs(E/e)
C3

1
(1/b3) + (1/a3)

(7.3)

The threshold currents due to the RF cavities and bellows are determined by using the loss
factors k⊥ of these elements,

Ith '
8νsfrev(E/e)
〈β〉∑k⊥,i(σs)

(7.4)

The loss factors as measured at LEP are about 2.3 V/pC/m at σs = 1 cm for a 10 MV su-
perconducting cavity and about 0.41 V/pC/m at σs = 1 cm for a single bellows. The net
threshold current from these three sources is

1
Ith

=
1

IRWth
+

1
IRFth

+
1

Ibellowsth

(7.5)

We will consider two different materials for the beam pipe: aluminum and copper and two
values for the total loss factor of the bellows: 100 V/pC/m and 300 V/pC/m. The larger value
would correspond to bellows placed about every 318 m apart. Table 2 shows the relevant
parameters for the calculation of the threshold current. The number of cavities is determined
by the voltage of 4852 MV required for operation at 200 GeV. We assume that each cavity
supplies 10MV leading to a total of about 486 cavities. The bunch parameters νs, σs are the
values at injection energy 46 GeV.

Figure 5 shows the threshold current Ith as a function of the half-height b for the different
cases. If a copper coating on the beam pipe is essential, for example to minimize parasitic
heating and eddy current losses, then the threshold current of 0.2 mA is obtained at b = 4.6
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ρAl [Ω-m] 2.65×10−8

ρCu [Ω-m] 1.7×10−8

a = 2.5b
Number of RF cavities 486
kRF⊥ [V/pC/m] 1118
kbellows⊥ [V/pC/m] 100/300
〈β〉 [m] 133
E [GeV] 46.0
σs [cm] 1.22
νs 0.108

Table 2: Parameters used in the calculation of the TMCI threshold current.
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cm when kbellows⊥ = 100 V/pC/m and at b = 5.0 cm when kbellows⊥ = 300 V/pC/m. With
an aluminum beam pipe, the corresponding values are b = 4.8 cm when kbellows⊥ = 100
V/pC/m and b = 5.4 cm when kbellows⊥ = 300 V/pC/m. At half heights less than 3 cm, the
impedance is dominated by the resistive wall with either material while at larger chamber
heights, the material and the impedance of the bellows start to make a difference. There is
therefore room to optimize on the cost and complexity of the vacuum chamber design. The
demands on the vacuum chamber size would be reduced if bunches can be coalesced after
reaching top energy. This needs to be studied further.

7.2 Longitudinal Mode Coupling Instability

This is also known as the longitudinal microwave instability [28]. It usually does not lead
to beam loss but to growth in the bunch length and energy spread up to a point before level-
ling off. The onset of this instability occurs when the ms = 2 sideband coalesces with the
ms = 1 sideband. The threshold for bunched beams is given by the Keil-Schnell-Boussard
criterion [29].

[
Z||
n

]eff =
2π|η|(E/e)(σp)2

Î
(7.6)

where η is the slip factor and Î =
√

2πcIav/(ωrevσs) is the peak bunch current. For short
bunches σs < b (as is the case for the VLLC), the effective impedance is reduced and can
be modeled by the SPEAR scaling ansatz [30]

[
Z||
n

]shorteff = [
Z||
n

]eff(
σs
b

)1.68 (7.7)

With this scaling taken into account, the threshold impedance for the onset of this instability
is 3.39 mΩ.

We evaluate the effective longitudinal impedance of the ring due to the resistive wall.
The effective impedance is

[
Z||
n

]eff =
∫∞
−∞(Z||/n)hm(ω) dω∫∞

−∞ hm(ω)
(7.8)

Since the instability develops near m = 1, the impedance should be evaluated at this fre-
quency. Using h1 = (ωσt)2 exp[−(ωσt)2]/(4π), and doing the integrations we find

[
Z||
n

]eff =
Γ(1/4)
2
√
π

Rρ(1/b+ 1/a)
2δ1

√
ωrev
ωbunch

(7.9)

where δ1 is the skin depth at the revolution frequency and ωbunch = c/σs. This expression
amounts to a roughly 2% correction on simply evaluating the resistive wall impedance at
the frequency ωbunch .

Figure 6 shows the effective impedance as a function of the half height. The wall impedance
is lower than the threshold impedance only for half heights greater than 5 cm for both alu-
minum and copper. When other sources of impedance are included, the ring impedance will
exceed the threshold for the onset of the micro-wave instability. As mentioned earlier, this
is not devastating. For example, with the RF voltage set to provide an RF acceptance of ten
times the equilibrium energy spread, the quantum lifetime should be sufficient even with the
increased momentum spread.
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Figure 6: The effective longitudinal impedance due to the resistive wall as a function of the vac-
uum chamber half-height for aluminum and copper. The lineZthresh = 3.39 mΩ corresponds to
the threshold impedance for the onset of the microwave instability.

7.3 Transverse coupled bunch instabilities

A transverse coupled bunch mode is described by two mode numbers (m, n). WithM equally
spaced bunches, there areM coupled bunch modes with mode numbersm = 0, 1, ...M−1.
The index n describes the motion of individual bunches in synchrotron phase space, thus
n = 0 describes rigid dipole motion of the bunch, in then = 1 mode the head and tail are out
of phase transversely, etc. At zero current, the frequency of mode (m, n) is (νβ +nνs)ωrev.

The growth rate for the (m, n)th mode is [28]

1

τ
(m,n)
⊥

= − 1
1 +m

cMIb
4πνβ(E/e)

∑
k

ReZ⊥[(kM +m+ νβ + nνs)]F ′m(ωτt − χ) (7.10)

whereF ′m is a form factor depending on τt = 2
√

6σt, the total length (in time) of a Gaussian
bunch and χ = ν′βωrevτt/η. ν′β is the chromaticity. The mode with the fastest growth rate
is the n = 0 mode.

The resistive wall contributes to this instability. As ω → 0 the resistive impedance in-
creases as |ω|−1/2 (as long as the wall thickness is greater than the skin depth). The mode
with the largest growth is the one with the negative frequency closest to zero, kM+m+νβ ≈
0. With M = 114 and νβ = 279.4, this would correspond to the mode with k = −3 and
m = 62. The form factor F ′0 is approximately unity for zero chromaticity, so we obtain the
growth rate for the fastest mode

1

τ
(62,0)
⊥

=
cMIb

4πνβ(E/e)
cC

2π
(

1
b3

+
1
a3

)
√

µ0ρ

4π∆νβωrev
(7.11)

where ∆νβ is the betatron tune difference below the integer. Setting ∆νβ = 0.1 (instead of
0.6) to obtain the fastest rate, we obtain a growth time of 117 msec or 151 turns at 46 GeV.
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Frequency [MHz] R/Q (Ω) Q
Transverse

461 18 16,000
476 15 14,000
506 20 16,500
639 56 11,500
688 25 6000

Longitudinal
513 13 44,000

1006 16 5500

Table 3: HOMs in the 352 MHz LEP SC cavities [31]

Mode number n Mode number m Growth time (secs) [E = 46 GeV]
0 62 0.14
0 61 0.23
0 60 0.29
1 93 210.7
1 92 2110.5

Table 4: Fastest growth rates of transverse coupled bunch modes due to RF cavity HOMs.

The individualhigher order modes (HOMs) of the RF cavities will also contribute strongly
to the wakefields coupling several bunches. As a worst case estimate we will assume that
the HOMs of different cavities coincide exactly. This neglect of the spread in frequencies
due to the fabrication process will lead to the fastest growth rates. We will use the HOM fre-
quencies and correspondingR/Q andQ values for the superconducting LEP cavities which
operate at 352.209 MHz. These cavities have dominant HOMs clustered around 480, 650
and 1100 MHz [31]. HOM couplers are designed to extract the energy at these modes from
the cavity and reduce the impedance at these frequencies. Table 3 (taken from Reference
[31]) shows the dominant cavity modes and the impedances achieved with the use of these
couplers.

We use the program ZAP [32] to estimate the growth rate for some of the fastest modes.
Table 4 shows that the shortest growth times due to the cavity HOMs are of the same order
as that due to the resistive wall. Note that these growth times are smaller than the transverse
radiation damping time of about 3700 turns or 5.7 secs at 46 GeV. If the betatron frequency
spread is not enough to Landau damp these modes, then a feedback system will be necessary
to damp the transverse coupled bunch instability.

7.4 Longitudinal coupled bunch instabilities

As in the transverse coupled bunch case, two mode numbers (m, n) are required. Now n =
1 describes rigid dipole motion, n = 2 describes quadrupole motion of the bunch etc. At
zero current, the frequency of mode (m, n) is nνsωrev .
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Mode number n Mode number m Growth time (secs) [E = 46 GeV]
1 25 0.022
1 26 3.04
1 24 3.53
2 25 2.70
2 26 443.8

Table 5: Fastest growth rates of longitudinal coupled bunch modes due to RF cavity HOMs.

The growth rate is determined by the resistive part of the impedance [33]

1
τm,n||

=
ηhωrevIav
4πνs(E/e)

∑
k hm(ωk)Re(Z||[ωk])/ωk∑

k hm(ωk)
(7.12)

where ωk = (kM + m + nνs)ωrev . The reactive part of the impedance determines the
coherent frequency shift. Unlike the transverse case, the resistive wall impedance at low
frequency does not contribute to the longitudinal instability because even the lowest bunch
spectrum functionh1 vanishes faster asω → 0 than the impedance increases. Table 5 shows
the most unstable modes determined using ZAP with the RF HOMs shown in Table 3. The
growth time of the most unstable mode is only 0.02 seconds which is faster than the trans-
verse multi-bunch instability growth rate. If the combination of Landau damping due to a
synchrotron frequency spread and radiation damping is not enough, a longitudinal feedback
system will be necessary.

8 A Collider at 46 GeV
There is considerable interest in precision measurements at theW and Z0 mass range,ECM ∼
90 GeV. Here we consider the feasibility of using this large collider to attain high luminosi-
ties - in excess of 5×1033 cm−2sec−1. These are the so-called “gigaZ” measurements which
required integrated luminosities around 500 inverse picobarns. Polarized beams at this en-
ergy will greatly add to the physics program allowing for example measurements of the left
right asymmetry or the Weinberg angle.

The design principles for obtaining high luminosity at low energies are different from
those at high energy. At low energies, the synchrotron radiation power is low and does not
impose any constraints. Only the beam-beam tuneshift limit needs to be respected. This
constrains the bunch intensity per unit transverse area orNb/ε. Under these conditions, the
luminosity is

L =
π

r2
e

MBfrev[
σ∗xσ

∗
y

(β∗y)2
]γ2ξ2

y (8.1)

=
π

r2
e

MBfrev[
κβ∗x

(β∗y)3
]1/2 γ2ξ2

y εx (8.2)

In this regime the luminosity increases with the emittance L ∝ εx so this requires that the
aperture be filled to maximize the luminosity. Leaving enough room for good quantum life-
time, the maximum permissible emittance could be determined by a condition such as

Areq ≡ 10 ∗ [σ2
x + (Dxδp)2]1/2 + c.o.d ≤ rpipe (8.3)
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where c.o.d is the expected closed orbit distortion and rpipe is the radius of the beam pipe.
The emittance can be increased by lowering the phase advance per cell. The bunch intensity
is found from the beam-beam tune shift

Nb = (
2π
re

√
κ

β∗y/β
∗
x

)γεx ξy (8.4)

If this intensity exceeds the TMCI thresholdNTMCI
b , the emittance can be lowered by in-

creasing the phase advance.
There is no significant constraint on the beam current from the synchrotron radiation

power so this does not limit the number of bunches. Instead the number of bunches is limited
by the minimum bunch spacing allowed. This spacingSminb could be limited by multi-bunch
instabilities. Assuming a uniform bunch distributionaround the ring, the number of bunches
is determined by

MBfrev =
c

Sminb

(8.5)

We will assume Sminb = 5 m, somewhat arbitrarily. It remains to be checked that this short
a bunch spacing is feasible with a reasonable longitudinal feedback system.

For 46 GeV operation we will use the same magnet lengths as determined by high energy
operation. The cell length is also fixed although it may be attractive to double the cell length
by turning off half (or perhaps two thirds of) the quadrupoles. This would allow a higher
phase advance for the same emittance. We assume that the beam pipe radius is 5 cm. High
energy operation fixes some of the ring parameters. These include the average arc and bend
radius, length of the magnets and FODO cells

The minimum phase advance per cell µmin is determined by the requirement Areq ≤ 5
cm. We allow for a rms closed orbit distortion of 1 cm - a conservatively large value. The
left figure in Figure 7 shows the emittance andAreq as a function of the phase advance. From
this figure we determine µmin = 25◦. The right figure in Figure 7 shows that the luminosity
drops below 1034 cm−2sec−1 at phase advances greater than 27◦. Hence we set the phase
advance per cell to the minimum value µC = µmin. The values of other parameters follow
and are shown in Table 6.

The luminosity is slightly above 1034 cm−2sec−1. The single bunch current is low at
0.03 mA or about a third of that required at 200 GeV so the TMCI instability may not be an
issue. However with the large number of bunches, the beam current is high at 1.4 A. This
makes the design more akin to that of the B factories. While the RF voltage required is low
at 50 MV, we assume that it will be provided by the superconducting cavities required for
operation at 200 GeV. The dynamic heat load and the HOM power generated in these cavi-
ties may be substantial at these high beam currents and may therefore rule out such a large
beam current. Multi-bunch instabilities may also be severe and therefore require dedicated
feedback systems for low energy operation. Finally the Sokolov-Ternov polarization time
is 2600 hours, thus physics with polarized beams is not an option at this energy unless one
injects polarized beams into the ring.

In short, operation at 46 GeV will require several different challenges to be faced com-
pared to operation at 200 GeV. It is not even clear if the components will be able to withstand
the high beam currents required. Therefore it makes more sense to consider a smaller ring
for physics at the Z0 mass. A natural choice for this would be the injector to the large ring.
Such a ring (a Z0 factory) was proposed by E. Keil [9].
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Figure 7: Left: The emittance and Areq as a function of the phase advance per cell. Assuming
the beam pipe radius is 5 cm, this determines the minimum phase advance to be 25◦. Right: The
luminosity and synchrotron radiation power as a function of the phase advance. The luminosity
drops below 1034 cm−2sec−1 at phase advances greater than 27◦.

Energy [GeV] 46.00
Luminosity 12.38 ×1033

Synch. radiation power(both beams) [MW] 39.40
Number of bunches 46,600
Particles per bunch 1.47 ×1011

Bunch current [mA] 0.0302
Emittances [nano-m] 16.59, 0.83
Beam-beam parameter 0.045
Single beam current [mA] 1408.08
Phase advance per cell [deg] 25.0
Dipole field [T] 0.00578
Quad gradient [T/m] 1.161
RF Voltage [GV] 0.05
Relative energy spread 0.239×10−3

Bremm. lifetime [hrs] 168.9
Polarization time [hrs] 2600.8
Critical energy [keV] 6.514

Table 6: Select parameters of the 233 km ring operated as a collider at 46 GeV. The magnets
are the same as at 200 GeV with parameters in Table 1. The high beam current, large number of
bunches and long polarization time make this ring unsuitable for collider operation at 46 GeV.
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We consider a similar ring here but with a circumference chosen to be 15 km. This would
just fit within the Fermilab site. This choice is motivated by discussions at the Snowmass
2001 conference where it was pointed out that the tunnel for this “site filler” could also be
used for a 5 TeV proton injector to a VLHC. Unlike the design proposed by Keil [9], we
choose not to use polarization wigglers. Electrons and positrons into this machine are de-
livered from the Main Injector at an energy of 12 GeV. As a design strategy we choose the
bunch intensity in this 46 GeV machine to be the same as in the VLLC. If we assume that the
transverse impedance per unit length is the same in the two machines, then the bunch inten-
sity should be safely below the TMCI threshold at energies in the range from 12 GeV to 46
GeV - assuming that the impedance model ensures that we are below the TMCI threshold
by a factor of two in the VLLC. Another advantage of this choice of bunch intensity is that
if the optimal filling cycle for the VLLC requires that bunches be injected at full intensity
into the VLLC and immediately accelerated to top energy, then the filling cycle for the 46
GeV synchrotron is the same whether it is used as an injector or as a Z factory.

The luminosity is just above 5×1033 cm−2sec−1 which with standard assumptions on
operation times amounts to about 109 Z events a year. The bunch frequency is 1.5 MHz,
a number small enough that the detector will not be saturated with too many Z events per
second [34]. The polarization time is reasonable at 27 minutes. The dipole field is close to
that of the fields of the LEP dipoles. Overall the parameters of this ring appear reasonable
for use as a Giga-Z factory.

9 Scaling Laws with Energy and Radius
In the previous two sections we developed parameter sets for operation at 200 GeV and 46
GeV respectively. The design philosophies at these two energies were quite different. The
main interest in this ring however is at the high energy end so it is important to determine
the useful upper limit in energy for this machine. Thus for all energies above 100 GeV or
so, the design philosophy outlined in Section 2 is relevant.

We assume that magnet lengths, phase advances are chosen at some energy of interest
and thereafter kept fixed. Table 8 shows the scaling with energy of some of the important
parameters. Most of these dependences on energy are well known. For example the equilib-
rium emittance increases as γ2 and the RF voltage increases as γ4. The additional twist here
is that the beam-beam parameter is allowed to scale with energy and recent data (see Section
4) suggest that in a given machine ξmaxy ∼ γ1.2. If we are to operate at the beam-beam limit
at all energies, then (a) the luminosity drops much more slowly with energyL ∼ γ−1.8 com-
pared to γ−3 without the scaling of the beam-beam parameter and (b) the bunch intensity
increases more rapidly as Nb ∼ γ4.2 rather than γ3. The e+ − e− bremmstrahlung lifetime
also drops faster with energy as τL ∼ γ−2.2 in this scenario.

Figure 8 shows the values of luminosity and RF voltage as a function of energy with a
ring circumference of 233 km and synchotron radiation power kept constant at 100 MW. As
mentioned above ξ is allowed to scale with energy and the values at some of the energies
are shown in the figure. On this plot we show the luminosity and RF voltage at 46 GeV as a
single data point while the values above 100 GeV are obtained using the high energy design
strategy. We observe that if a maximum of 12 GV of RF is available, the energy reach of a
single beam in this ring extends from 100 GeV to 250 GeV with luminosities in the range
from 0.6-3×1034 cm−2sec−1. A complete list of parameters at other energies may be found
on the web [35].
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Circumference [km] 15.00
Energy [GeV] 46.000

Luminosity 5.16×1033

Synch. radiation power(both beams) [MW] 60.8
Number of IPs 1
β∗x, β∗y [cm] 100.000, 1.000
σ∗x, σ

∗
y [µm] 231.744, 2.317

Number of bunches 74
Bunch spacing [km] 0.203

Bunch frequency [Mhz] 1.48
Particles per bunch 4.851 ×1011

Bunch current [mA] 1.553
Emittances [nano-m] 53.705, 0.537

Single beam current [mA] 114.94
Arc radius [m] 1750.

Bend radius [m] 1500.
Number of cells 162

Phase advance per cell [deg] 90.0
Length of cell [m] 67.52
Dipole field [T] 0.1023

Quad gradient [T/m] 20.0
Quadrupole length [m] 0.321
Cell: σmaxx , σmaxy [mm] 2.488, 0.249

Max apertures required [cm] 4.067, 1.249
Max and min disp. [m] 1.763, 0.842
Momentum compaction 0.546×10−3

Harmonic number 20014
Energy loss per turn [GeV] 0.265

Damping time [turns] 173
RF Voltage [GV] 0.408

Relative energy spread 0.102×10−2

Synchrotron tune 0.1084
Bunch length [mm] 12.231

Longitudinal emittance [eV-sec] 0.006
Bremm lifetime [hrs] 5.99

Polarization time [hrs] 0.45
Critical energy [keV] 123.39

Number of photons/m/sec 0.453×1018

Linear Power load (single beam) [kW/m] 2.76

Table 7: Parameters of a 46 GeV ring that would fit on the site of Fermilab and serve both as an
injector to the VLLC and also as a collider at the Z pole.
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Parameter Energy dependence
Equilibrium emittance εx γ2

Energy loss U0, RF Voltage VRF γ4

Damping time τs ∼ E/U0 γ−3

Maximum beam-beam parameter ξy ∼ τ−0.4
s γ1.2

Luminosity L ∼ ξyγ−3 γ−1.8

Bunch intensity Nb ∼ ξyγεx γ4.2

Maximum number of bunches Mmax
B ∼ 1/(NbE4) γ−8.2

Synchrotron frequency νs γ3/2

Equilibrium energy spread σE/E γ
Bunch length σs γ−1/2

Critical energy Ec γ3

Bremmstrahlung lifetime τL ∼ 1/(ξyγ) γ−2.2

Table 8: Scaling of beam parameters with energy. Machine circumference and synchrotron ra-
diation power are kept fixed.
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Parameter Radius dependence
Maximum Energy E ρ1/3

Equilibrium emittance εx ∼ γ2/R3 ρ−7/3

Bunch intensity Nb ∼ ξyγεx ρ−2

Maximum number of bunches Mmax
B ∼ ρ/(frevNbγ4) ρ8/3

RF voltage VRF ∼ γ4/ρ ρ1/3 ∼ γ
Relative energy spread σE/E ∼ γ/

√
ρ ρ−1/6

Synchrotron frequency νs ∼
√
hVRFη/E ρ1/2

Bunch length σs ∼ 1/ωs(σE/E) ρ1/3

Critical energy Ec ∼ γ3

ρ
const.

Damping time τs ∼ E3/ρ const.
Maximum beam-beam parameter ξ ∼ τ−0.4

s const.
Bremmstrahlung lifetime τL ∼ 1/(frevγ) ρ2/3

Table 9: Scaling of beam parameters with the bend radius ρ. Luminosity and synchrotron radi-
ation power are kept fixed.

If this collider is to be part of a staged approach to a large tunnel housing both lepton
and hadron accelerators which will be ugraded in energy and/or luminosity over time, then
it makes sense to consider how the lepton collider parameters scale with the machine ra-
dius. This would help determine an optimum radius. Furthermore, once the parameters are
determined at one circumference, the scaling laws may be used to calculate the parameters
at any other circumference. Table 9 shows the scaling with radius of some of the important
parameters.

Some comments on these scalings are in order. Due to the strong dependence of the
emittance on the focusing in the arcs, the emittance actually decreases with machine radius
even though the energy has increased. The bunch intensity also decreases with increasing
radii and faster than the emittance in order to keep the beam-beam tune shift constant. The
number of bunches must be increased to avail of the maximum RF power when the ma-
chine radius is increased. VRF and maximum energy both increase with the cube root of the
machine radius. The critical energy, the damping time measured in turns and therefore the
damping decrement λd and maximum beam-beam parameter ξy do not change with machine
size.

10 An Injector System
The Fermilab accelerator complex (Linac, Booster and Main Injector) could be used as the
basis for an e+e− injector if the beam energies were somewhat reduced from those used for
protons. The specifications of of an injector system could follow the design of the LEP[41]
and HERA[45] injectors, or the the APS[46] injection system.

Two new electron linacs would be required. The first would operate at about 3 GHz
and accelerate electrons to an energy of around 200 MeV, which would be sufficient to pro-
duce positrons. A positron production target would be followed by a second linac section
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to produce a positron energy high enough to inject into the positron damping ring. Since
the positrons will be produced at a much lower flux and larger emittance than electrons, it is
necessary to damp and collect positrons from many pulses before further acceleration. The
CERN, HERA and APS damping rings are very compact, and operate at energies of around
400− 600 MeV. The operation of these systems in the same enclosure, parallel to the Fermi-
lab proton linac, seems possible, During the checkout of the FNAL 805 MHz linac upgrade,
the linac tunnel was operated essentially with two parallel linacs, so the addition of a e+e−

linac line would not crowd the existing facility[47].
We have considered the use of the FNAL Booster to accelerate the e+ and e− to higher

energies, however the use of gradient magnets in the lattice makes this ring somewhat inap-
propriate for electrons, since this lattice affects the damping partition numbers in undesir-
able ways. In order to eliminate this problem, a correction package, consisting of a gradient
magnet and a quadrupole, should be inserted in the ring to correct the damping partition
numbers. The booster has sufficient space to accommodate this package. Similar packages
have been used in the PS at CERN.

It is unclear if it is more efficient to reverse the magnetic field in the accelerator structures
or build injection lines so beams could circulate in opposite directions. We assume the fields
will not be reversed and injection and extraction systems would have to be added to the
booster for e+e − operation. The maximum energy that could be reached with the existing
rf would be around 3 GeV. Since a new proton source is being considered for a neutrino
source and muon collider, which would not fit in the existing booster tunnel, there is also the
possibility of designing a compact, separated function magnet lattice to replace the existing
booster magnets.

We assume electrons and positrons would be injected into the Main Injector (MI) in op-
posite directions at an energy of around 3 GeV. This energy would require the MI magnets
to operate at a much lower field than would ever be used for protons, however the magnets
have been measured at this low field and the field quality seems to be acceptable for electron
operation[48]. The maximum energy that could be produced in the main injector is around
12 GeV, due to the limited rf, and the limited space for adding more. The beams would then
be extracted in opposite directions into the VLHC booster tunnel for acceleration up to the
injection energy of the VLHC ring.

A third synchrotron is probably required, since the 12 GeV electrons from the MI in-
jected into the collider ring, would require the average magnetic field to be about 16 Gauss,
which should be compared to the 215 Gauss injection field of LEP. We have studied the prop-
erties of an electron ring in the tunnel of a low field VLHC booster in the context of an ep
collider[49]. Such a ring could have a maximum energy up to about 80 GeV with a installed
RF voltage of 1.09 GV. We assume this rf operates at 352 MHz. If the VLHC booster ring
was used only as an injector, an injection energy of around 40 GeV could be accommodated
with an rf voltage of about 60 MV.

The suggestion by E. Keil[9] of building an injector with a beam energy of 46 GeV has
a number of desirable results. A higher energy injector makes injection into the high energy
ring easier, and raises the transverse mode coupling instability threshold, permitting more
intense bunches. In addition the injector is at an energy where it could be carefully optimized
for operation as a “Giga Z” Factory, with bunches circulating in a comparatively small ring.
This permits staging, in that the injector can be producing useful physics while the large
ring is under construction. When the facility is complete, there would be the opportunity of
using the injector for Z0 physics while the high ring is used for Higgs, SUSY and top quark
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Booster: 0.4 - 3 GeV

Main Injector
  3 - 12 GeV

Tevatron Ring

Z Factory  12 - 46 GeV 

VLLC / VLHC

Figure 9: Layout of the injectors for the VLLC and the VLHC. The tunnel housing the Z factory
is 15 km around and fits within the Fermilab site. It could also be used to house an injector for
the VLHC [53].

physics. Figure 9 shows the schematic layout of the injectors together with their energy
range.

10.1 Operational Cycle

The operational cycle will need to be optimized to minimize the filling time and maximize
the integrated luminosity in the collider. The details of the filling cycle depend on a number
of parameters which are unknown at this stage such as the number of electrons/positrons
per pulse from the linacs, the damping time in the modified Booster etc. Nevertheless with
some assumptions we can outline a sketch of a filling procedure. Table 10 shows some rel-
evant parameters of the injector synchrotrons and the collider. The ratio of circumferences
of these machines are 1:7:4.52:15.53. If we assume for the moment that each bunch can be

Booster Main Injector Z factory VLLC
Circumference [km] 0.474 3.319 15.0 233.0
Injection Energy [GeV] 0.4-0.6 3 12 46
Harmonic Number 84 588 20014 273576

Table 10: Relevant Injector parameters for the operational cycle
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filled to the required intensity by single turn injection into each synchrotron, then a bunch
current of 0.1 mA in the VLLC corresponds to bunch currents of 1.55 mA in the Z factory, 7
mA in the Main Injector and 49 mA in the Booster. Space charge effects, synchrotron radia-
tion doses to name but a few effects rule out such high currents in the Booster. Thus several
Booster cycles are required which must also provide for transmission losses in the injector
chain. In each Booster cycle, a maximum of 82 bunches can be extracted to the Main Injec-
tor. At 200 GeV, 114 bunches are required in the VLLC to obtain the maximum luminosity
while respecting the synchrotron power limit of 100 MW. One possibility is to extract these
bunches in two Booster batches, with an equal number of bunches in each batch, to the Main
Injector. If the cycle time is roughly the same as at present, which accelerates protons from
400 MeV to 8 Gev, a batch can be delivered at an energy of 3 GeV to the Main Injector ev-
ery 1.5 seconds or less. For Tevatron collider operation, the Main Injector operates on a 4
second cycle accelerating protons from 8 GeV to 150 GeV. This includes 1.45 seconds dur-
ing flat-top at injection energy when proton bunches are coalesced and cogged. With e+e−

operation, the Main Injector would accelerate particles from 3 GeV to 12 GeV and perhaps
in a single batch of 114 bunches and without accumulation of intensities. Particles could be
extracted in a single turn to the Z factory which in turn accelerates them to 46 GeV where
they are extracted to the VLLC. In the collider damping times are short and these freshly in-
jected bunches could coalesce with the circulating beam. In this scenario, bunch intensities
are accumulated only in the collider. Another, perhaps more promising, option is to accu-
mulate bunches to full intensity in the 46 GeV synchrotron where the damping time is also
relatively short. This has the advantage that in the VLLC, bunches can be accelerated imme-
diately after injection and so minimize the time spent at injection energy when instabilities
are the most dangerous. However detailed studies are required and other scenarios where
accumulation takes place in the other injector synchrotrons as well may be more optimal.

11 Technological Challenges
The primary technical challenges seem to be cooling the vacuum chamber, disposing of the
heat produced, and determining how low the field of the collider magnets can be confidently
run, since this minimum field determines the design of the magnets and the injection energy.
In addition, however, there are a number of other technical problems which must be consid-
ered.

11.1 Vacuum System

Besides the usual synchrotron radiation induced gas desorption, the vacuum chamber design
is determined by a number of constraints. Although the power density of the synchrotron
radiation deposition is smaller than many other storage rings and synchrotron sources, the
critical energy of the synchrotron photons spans a large range, (5 - 500 keV), and the large
bend radius complicates the power deposition. In addition the large circumference requires
a design which both minimizes beam wall interactions and is inexpensive.

The large range in critical energy of the synchrotron radiation implies that the power in
low energy beams will be deposited mostly inside the vacuum chamber, but the chamber will
become transparent to high energy photons, so external absorbers are required for high ener-
gies. The high energy photons will also be subject to internal reflection at grazing incidence,
but are poorly attenuated by aluminum. These photons are a radiation hazard to electronics
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and cable insulation, thus the absorbers must be shielded to insure useful radiation levels in
the tunnel.

The large bending radius complicates even deposition of synchrotron radiation power
on the vacuum chamber walls, since these chambers would be expected to move slightly
with operational temperature fluctuations and the motion of the earth. Since deposition on
the wall is not expected to be constant, we assume that the vacuum chamber would have an
ante-chamber which would conduct the synchrotron radiation to lumped absorber / window
assemblies where the power could be absorbed and the synchrotron radiation outgassing
could be pumped.

In order to minimize both beam-wall interactions and the cost and complexity of the
vacuum system, it may be desirable to use prebaked chambers, and welding the aluminum
vacuum sections in-situ, without a subsequent bake out[50]. This makes assembly easier,
eliminates the need for bellows with a large mechanical range, reduces the rf loss factor
induced by the bellows on the beam (both due to the number and complexity of bellows),
and reduces the cost and complexity of the vacuum system as a whole. Since the cham-
ber will heat up somewhat during normal operation, some bellows are required. It is, how-
ever, highly desirable to avoid the expansion involved in a high temperature bake, (∆l =
αl∆T = 2.4 · 10−5 100 100 = 24 cm), for lengths l and ∆T of 100 m and 100 deg C. In
order to do this, one must have sufficient pumping in the chamber to insure that a pressure of
10−8 Torr can be achieved, which would allow a beam lifetime of about an hour, and permit
subsequent wall scrubbing by synchrotron radiation.

11.2 Cooling System

The warm water produced in the synchrotron absorbers is also a concern. Since there will be
roughly 100 MW of heating, distributed over 230 km, we assume this heat must be brought
to the surface where cooling towers would be used to discharge it into the atmosphere. This
system would be a significant environmental perturbation on the surface. We have also
looked at discharging the heat into the ground and into surface water. Since the tolerable
thermal range of the system is fairly narrow, due to the fact that thermal expansion must be
minimized, the temperature range of the water would also be comparatively limited, thus it
would be difficult to recover any useful power from the waste water.

11.3 Magnet Design

The primary issue with the injector system design is determining the minimum field where
the ring magnets can usefully transport beam. Since the bending magnets in the arcs operate
at a field of Binj [Gauss] = 1.3 E[GeV], and the error fields at injection should be below
(10−4 − 10−3)Binj , error fields due to external sources, other components and remanent
fields, could be a problem. A final injector synchrotron must then be designed which can
produce beams in the required energy. This synchrotron can be located in the tunnels which
would be eventually occupied by the hadron booster.

We have shown that external fields can be well attenuated by the magnet yoke itself and
extensive shielding of magnets may not be required[8] [42]. The remanent fields at low
excitation are a function of the specific alloy used, and number of alloys exist with very low
remanent fields, however their costs tend to to be higher than steel. One option seems to be
the use of vacuum or hydrogen annealed steel [43]. This anneal removes carbon from the
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Figure 10: Hysteresis loss as a function of carbon content in steel.

steel very efficiently, reducing the remanent field and hysteresis loses by a significant factor,
as shown in Figure 5 [44]. It seems as though an order of magnitude reduction in remanent
fields from the standard low carbon 1010 alloy, (∼ 0.1% carbon), may be possible, in an
alloy which is not significantly more expensive than standard commercially produced ones.

11.4 Other Components

A number of other systems and design issues have not been considered in any significant
detail in this paper. We assume that superconducting RF cavities will be necessary. The
design of these cavities must suppress higher order modes efficiently.

It is not clear if the e+ − e− collider arcs would be optimized with one or two rings.
While it is possible to assume that pretzel orbits can produced in the comparatively long
arcs, it is not clear if parasitic collisions will produce significant emittance growth to justify
the construction of a second set of arc magnets. This may significantly affect the cost.

The placement of the rf cavities will determine the energy of the beam around the ring.
Since so much energy is added per turn, it may be necessary to distribute the cavities around
the ring. This might require zero dispersion straights at a number of locations.

If the e+−e− collider and the low field hadron collider magnets are both energized at the
same time, the lepton collider will need to be protected from the fringe fields of the hadron
collider. These fringe fields at a distance of about a meter are of the order of a few hundred
Gauss, about the same level as the main bending field in the lepton collider.

Extensive masking and collimation systems will be required to protect the detector com-
ponents from synchrotron radiation.
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12 Conclusions

We have explored the feasibility of a large electron-positron collider within the context of
a staged approach to building a very large hadron collider. We have shown that in a ring of
circumference 233 km, a lepton collider with 200 ≤ Ecm ≤ 500 GeV with synchrotron ra-
diation power limited to 100 MW would require RF voltages comparable to LEP and would
achieve luminosities in the range 0.6 - 3×1034 cm−2sec−1 with reasonable choices of beam
parameters. The achievable energy extends to nearly 1000 GeV (center of mass) at a lower
luminosity of 1033cm−2sec−1 but an unrealistic RF voltage is required to replenish the en-
ergy lost by the beam.

Such a machine derives benefits from its size and operating energy, in that the limiting
beam-beam tune shifts may be much higher than even those seen at LEP. In addition it may
be possible to further optimize the operation of this machine, particularly the interaction re-
gions, to operate with a smallerβ∗y than was used in LEP. A preliminary IR design [15] shows
that β∗y = 1 cm may be feasible. There are a number of open issues which require more ef-
fort. It is not clear what is the the upper limit on ξy, nor what are the maximum number of
bunches in the ring. The demand for collisions prevented significant experimental work at
LEP on these issues, but they can be studied theoretically. There may be ways of overcom-
ing the TMCI limitations by coalescing electron bunches at high energies, but this has never
been done. There are also some other questions. Is feedback useful against TMCI? What
does an optimized 45 GeV Z0 factory look like? How can polarization at high energies be
optimized? Would one ring suffice for the large ring or are two rings necessary? What is
the optimum method of pumping the long vacuum chamber sections? How much cost and
power minimization is possible in the complete design? These questions will require con-
tinuing study and experimental work.

One of the conclusions of the hadron collider working group at the Snowmass 2001 con-
ference was that the lattice design of this e+e− collider is compatible with the VLHC [53].
The decision on whether to build a lepton collider in a tunnel housing a very large hadon
collider must ultimately be based on the physics reach at these energies. Assuming that the
physics case is compelling, the design of such an accelerator can proceed to the next stage.
The cost of the technical components in the lepton collider will likely be dominated by the
superconducting RF cavities and the vacuum system. Improvements in design and technol-
ogy can be expected to reduce the cost a decade from now compared to what they are today.
Several technical challenges have to be faced but none appear to be insurmountable.
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A Appendix: Useful Symbols and Formulae

c Velocity of light
e Electron charge
E Beam energy

frev Revolution frequency
h Harmonic number
H Lattice factor = [η2 + (βη′ − β′η/2)2]/β
Ib Bunch current
I Beam current in a single beam

Jx, Jy, Js Horizontal and Longitudinal partition numbers
k⊥, k‖ Transverse, Longitudinal loss factor
L Luminosity
me Electron mass
Mb Number of bunches in the ring
Nb Number of particles in a bunch
PT Synchrotron power lost in both beams
re Classical electron radius
R Arc radius

VRF Maximum RF voltage
αc momentum compaction

βx, βy Beta function at some point in the ring
β∗x, β

∗
y Beta function at at the interaction point
γ Relativistic factor
δ Momentum variation

εx, εx Horizontal, Vertical emittance
η Slip factor
κ Emittance ratio = εy/εy
λd Damping decrement

µx, µy Phase advance per cell
νs Synchrotron tune

νx, νy Arc tunes
ξx, ξy Beam beam tune shift

ρ Bending radius
σx, σy Beam radius
σE Bunch energy spread

σ∗x, σ
∗
x Beam radius at interaction point
τL Beam lifetime
φs Synchrotron phase
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Unless specified otherwise, the formulae in this section are obtained from the article by
Sands [37].
Luminosity

L =
Ne+Ne−Mbfrev

4π
1√

β∗x,eεx,e
√
β∗y,eεy,e

(A.1)

where Ne+ , Ne− are the bunch intensities,Mb is the number of bunches.

Equilibrium horizontal emittance

εx =
Cqγ

2

Jx

[∮
H/ρ3ds∮
1/ρ2ds

]
(A.2)

The equilibrium emittance in a lattice built entirely with FODO cells scales with the hori-
zontal phase advance µCx per FODO cell as [36]

εx(µCx ) = 4
Cqγ

2

Jx
θ3 1− 3

4 sin2(µCx /2) + 1
60 sin4(µCx /2)

sin2(µCx /2) sinµCx
. (A.3)

where Cq = (55/32
√

3)h̄/mc = 3.84 × 10−13m, Jx is the horizontal damping partition
number and θ is the bending angle in half of the FODO cell.

Momentum compaction

αC ≈
LArc
C

θ2

sin2(µc/2)
(A.4)

where LArc, C are the lengths of the arcs and the circumference respectively, θ is the bend
angle per half cell and µc is the phase advance per cell.

Equilibrium energy spread
σE
E
'
√
Cq
Jsρ

γ (A.5)

where

Cq =
55

32
√

3
h̄c

mc2
= 3.84× 10−13 m

for electrons and positrons. Js is the longitudinaldamping partition number, ρ is the bending
radius.

Equilibrium bunch length

σs =
c | η |
ωs

σE
E

=
c√

2πfrev

√
| η | E

heVRF cosψs
σE
E

(A.6)

where η is the slip factor, ωs is the angular synchrotron frequency and the other symbols
have their usual meanings.

Energy acceptance

(
∆E
E

)accept =

√
eVRF
πh|η|EG(φs) (A.7)

G(φs) = 2 cosφs − (π − 2φs) sinφs
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Beam-beam tune shifts

ξx =
Nbreβ

∗
x

2πγσ∗x(σ∗x + σ∗y)
, ξy =

Nbreβ
∗
y

2πγσ∗y(σ∗x + σ∗y)
(A.8)

In the limit σ∗x � σ∗y ,

ξx =
Nbreβ

∗
x

2πγ(σ∗x)2
, ξy =

Nbreβ
∗
y

2πγσ∗xσ∗y
(A.9)

Energy lost by electrons per turn

U = Cγ
E4

ρ
, Cγ =

4π
3

re
(mec2)3

= 8.86× 10−5m/GeV3 (A.10)

Synchrotron radiation power in beam

Psynch =
UIe
e

(A.11)

Critical energy [38]

Ecrit[keV ] = 2.218
E3[ GeV]
ρ[ m]

(A.12)

Critical Wavelength [38]

λcrit[Angstroms] =
4πρ
3γ3
× 1010 (A.13)

Number of photons emitted per second by a particle

Nγ =
15.0
√

3
8.0

Psynch[MW]
eNbEcrit[keV]

× 103 (A.14)

Total Photon Flux [39]

Ṅγ[photons/sec] = 8.08× 1017 × I [mA]E[GeV] (A.15)

Gas Load [39]

Qγ[Torr− litres/m/sec] = 4.5× 10−20ηphotoφγ (A.16)

where ηphoto is the photo-desorption coefficient and φγ = Ṅγ/LArc is the photon flux per
unit length.

Damping partition numbers

Js ' 2.0 , Jx + Jy + Js = 4 (A.17)

For a FODO cell in the thin-lens approximation

dJx
dδ

= −4
LD
LQ

[
2 + 1

2 sin2 µ/2
sin2 µ/2

]
(A.18)
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Damping times

τ0 =
E

frevU
, τs =

2
2 +Dτ0 ≈ τ0, τy = 2τ0, τx =

2
1−Dτ0 ≈ τy (A.19)

D =
〈D
ρ2 (1

ρ + 2B
′

B )〉
〈 1
ρ2 〉

(A.20)

Longitudinal quantum lifetime

τquant;s =
τs
N 2
QL

exp[
1
2
N 2
QL] , NQL = (

∆ERF
σE

) (A.21)

∆ERF is the energy acceptance of the bucket provided by the RF system, σE is the sigma of
the energy distribution and τs is the longitudinal synchrotron radiation damping time. This
is the expression due to Sands [37] but there are other (perhaps more accurate) expressions.
Transverse quantum lifetime

τquant;β =
erβ

2rβ
τ⊥ , rβ =

1
2

(
xApert,β
σβ

)2 (A.22)

xApert,β is the transverse position of the aperture limitation, σβ is the transverse sigma of
the particle distribution and tdamp,⊥ is transverse synchrotron radiation damping time. If
there is finite dispersion at the location of the aperture limitation, then Chao’s formula [40]
holds

τquant;β =
1√
2π

exp[rβ,δ]
(2rβ,δ)3/2

1
(1 + f)

√
f(1− f)

τ⊥ (A.23)

where

rβ,δ =
1
2

(
xApert,β
σT

)2 , σ2
T = σ2

x +D2
xσ

2
δ , f =

D2
xσ

2
δ

σ2
T

Dx is the dispersion at the location of the aperture, σδ is the relative momentum deviation.
For a fixed transverse damping time, the quantum lifetime depends on the parameters f, rβ,δ
and has minimas at specific values of these parameters.

e+e− Bremmstrahlung cross-section
The dominant process which determines the lifetime at collision is small angle forward

radiative Bhabha scattering which has a cross-section given by [52]

σe+e− =
16
3
αr2

e

[
−(ln(

∆E
E

)accept +
5
8

)(ln(4γe+γe−)− 1
2

) +
1
2

ln2(
∆E
E

)accept −
π2

6
− 3

8

]
(A.24)

where (∆E/E)accept is the RF acceptance of the bucket.
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B Appendix: Scaling of the Beam-beam parameter

Consider a simple model of the beam-beam kicks which treats them as random kicks similar
to those due to photon emission. This model should become more accurate as the radiation
damping time decreases so that kicks from turn to turn become more uncorrelated. We fol-
low Sands’ notation here.

In the linearized approximation of the beam-beam kicks,

∆x′ = − 2Nbrex

γσ∗x(σ∗x + σ∗y)
(B.1)

The change in amplitude a2
x = [x2 + (βxx′ + αxx)2]/βx due to a beam-beam kick is

∆a2
x = 2(βxx′ + αxx)∆x′ + βx(∆x′)2 (B.2)

At the IP, αx = 0. So

x∗ =
√
β∗xax cosφx , x

′∗ = − ax√
β∗x

sinφx (B.3)

The beam sizes are assumed to stay matched at all stages so that σ∗x,e+ = σ∗x,e− = σ∗x and
σ∗y,e+ = σ∗y,e− = σ∗y . We assume that at high currents and large damping, the beam-beam
kicks randomizes the betatron phase from turn to turn. In this regime, non-linear resonances
are no longer very important. When we average the change in amplitude over all betatron
phases, the term 〈x′∆x′〉 ∼ 〈sinφx cosφx〉 = 0. If there are NIP IPs, kicks from each of
these are also considered as uncorrelated so that the net change in the squared amplitude is
the sum of all these kicks,

〈∆a2
x〉NIP = 2NIP (

Nbre
γσ∗x(σ∗x + σ∗y)

)2(β∗xax)2 (B.4)

The rate of change of a2
x including the effects of random photon emissions and radiation

damping is
d

dt
〈∆a2

x〉NIP = Qx − 2
〈a2
x〉
τx

+
〈a2
x〉
τ1

(B.5)

where

Qx =
〈Nγ〈u2〉H〉s

E2
(Sands′ notation) (B.6)

1
τ1

= 2(
Nbreβ

∗
x

γσ∗x(σ∗x + σ∗y)
)2NIPfrev (B.7)

τ1 defines a time scale for the beam-beam interactions. In the stationary state, the left hand
side of Equation 5 vanishes and 〈a2〉 ≡ 〈a2〉eq = 2εeq , where εeq is the equilibrium emit-
tance. The beam sizes at the IP σ∗x, σ

∗
y are determined by the perturbed equilibrium emit-

tances.
σ∗2x = β∗xεeq,x , σ∗2y = β∗yεeq,y (B.8)

In the limit that σ∗x � σ∗y , assuming that this is still true after beam blow up in the vertical
plane,

1
τ1

= 2(
Nbreβ

∗
x

γσ∗2x
)2NIPfrev = 2(

Nbre
γεeq

)2NIPfrev (B.9)
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Hence the equation for the equilibrium emittance is

1
4
Qx =

1
τx
εeq − (

Nbre
γ

)2NIPfrev
1
εeq

(B.10)

In the absence of the beam-beam interactions, the equilibrium emittance is

ε0 =
1
4
Qxτx (B.11)

Solving the quadratic and keeping the positive root (the emittance increases with the beam
current), we find

εeq =
1
2
ε0[1 +

√
1 + 4χbb] (B.12)

where we have defined a dimensionless variable χbb as

χbb = (
Nbre
γ

)2 2
λdε

2
0

. (B.13)

λd = 1/(NIPfrevτs) = 2/(NIPfrevτx) is the damping decrement. We apply this to the
LEP data with parameters given in Table 1. The equilibrium emittance ε0 in the absence of
beam-beam effects is 21.3 nm. Using Equation (B.12), the equilibrium emittance with blow
up due to the beam-beam is found to be 153 nm, an increase by more than a factor of seven.
Measurements of the vertical emittance at LEP [18] showed that the emittance increased by
roughly 50% at the highest currents compared to the values at low current. As is typical,
the assumption of completely random uncorrelated beam-beam kicks over-estimates their
effect. The assumption that the entire betatron phase is random from turn to turn is a very
strong one and likely to be wrong. A better starting point would be to assume that only part
of the phase is random. A more sophisticated treatment with correlated random kicks is
possible, for an example of diffusion due to beam-beam phenomena in hadron colliders see
reference [54]. A Fokker-Planck treatment would be required for e+−e− beams, an analysis
that we will leave to a future publication. Instead we will make an assumption that the effect
of the partially random phases and correlated kicks can be described by a correction factor
Γ so that

εeq =
1
2
ε0[1 +

√
1 + 4Γχbb] (B.14)

Here Γ < 1 is to be treated as a dimensionless fit parameter which will not depend on bunch
intensity of the other beam but will depend on the tune, damping times and the lattice con-
figuration. This will suffice for our purpose here.

Consider the vertical beam-beam parameter

ξy =
Nbrrβ

∗
y

2πγσ∗y(σ∗x + σ∗y)

Limσ∗x�σ∗y→ =
Nbrrβ

∗
y

2πγσ∗xσ∗y
(B.15)

In the presence of coupling parametrized by a ratio κ = εy/εx, the beam-beam parameter is

ξy =
re(1 + κ)

2πγ

√
β∗y
κβ∗x

2Nb

ε0[1 +
√

1 + 4Γχbb]
=

2ξy,0
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√

1 + 4Γχbb]
(B.16)

where ξy,0 is the usual beam-beam parameter without the correction. When beam-beam ef-
fects are negligible, this reduces to the usual expression

ξy = ξy,0 =
re(1 + κ)

2πγ

√
β∗y
κβ∗x

Nb

ε0
(B.17)
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At large beam currents Nb →∞, the N 2
b term in χbb dominates the unperturbed emittance

term so that the asymptotic limit is

ξ∞y =
ξy,0√
Γχbb

=
(1 + κ)

2π

√
β∗y
κβ∗x

√
λd
2Γ

(B.18)

This is a lattice dependent constant, independent of current.
In the case of optimal coupling εy/εx = β∗y/β

∗
x which simplifies the above to

ξ∞y =
(1 + κ)

2π

√
λd
2Γ

This is clearly a very simple analysis and many important details of the dynamics are
missing. Some, such as the dynamic beta effect, are easily incorporated. A more severe
limitation perhaps is the neglect of the nonlinearities of the beam-beam force. The reso-
nance driving terms are probably not important in the extreme damping limit but the purely
action dependent terms in the beam-beam Hamiltonian can lead to important changes in the
stability limit. These and other effects need to be considered in a more complete treatment.
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